
II.- - ID

NASA Contractor Report 187514

ICASE Report No. 91-12

ICASE

PERFORMANCE EFFECTS OF IRREGULAR

COMMUNICATIONS PATTERNS ON MASSIVELY

PARALLEL MULTIPROCESSORS

Joe! Saltz

Serge Petiton

Harry Berryman

Adam Rifkin

Contract No. NAS 1-18605

January 1991

Institute for Computer Applications in Science and Engineering

NASA Langley Research Center

Hampton, Virginia 23665-5225

Operated by the Universities Space Research Association

RI/k6A
Nalional Aeronaotic,_ and
Space Administration

l_An_ley Re._enrch Center
t I_mpton, Virginia 23665-5225

4.
r,d
f,.,.

I

o'_
Z

4"
o_,4-

G
43

_ ,tr_j -

Performance Effects of Irregular Communications

Patterns on Massively Parallel Multiprocessors

Joel Saltz*

ICASE, NASA Langley Research Center

Hampton, VA 23665

Serge Petiton

Etablissement Technique Central de 1'Armement

16 his Avenue Prieur de la cote d'Or

94114 Arcueil Cedex France

Harry Berryman

ICASE, NASA Langley Research Center

Hampton, VA 23665

Adam Rifkin

Computer Science Department

College of William and Mary

Williamsburg, VA 23185

ABSTRACT

We conduct a detailed study of the performance effects of irregular communications

patterns on the CM-2. We characterize the communications capabilities of the CM-2 under

a variety of controlled conditions.

In the process of carrying out our performance evaluation, we develop and make extensive

use of a parameterized synthetic mesh. In addition we carry out timings with unstructured

meshes generated for aerodynamic codes and a set of sparse matrices with banded patterns

of non-zeros. This benchmarking suite stresses the communications capabilities of the CM-2

in a range of different ways. Our benchmark results demonstrate that it is possible to make

effective use of much of the massive concurrency available in the communications network.

*This research was supported by the National Aeronautics and Space Administration under NASA Con-
tract No. NAS1-18605 while the authors were in residence at the Institute for Computer Applications in

Science and Engineering (ICASE), Mail Stop 132C, NASA Langley Research Center, Hampton, VA 23665,
and by NSF Grants ASC-8819373 and ASC-8819374.

1 Introduction

Many algorithms used to solve extremely large computationally intensive problems are char-

acterized by irregular patterns of data access. It is often possible to substantially reduce

memory requirements in computations that arise in linear algebra by using sparse algo-

rithms [8], [20]. Sparse algorithms avoid explicitly storing matrix elements whose values are

known to be 0. Sparse algorithms are particularly important in large computationally in-

tensive problems since computationally intensive problems frequently require large amounts

of computer memory. Sparse linear algebra algorithms are employed to solve problems from

a variety of areas including structural an_ysis and oil reservior simulations. Irregular data

structure access patterns also occur in unstructured mesh methods used to solve problems

in computational fluid dynamics [13], [25]. The data structures in sparse algorithms and in

unstructured mesh methods tend to get referenced in non-uniform ways.

We carry out a detailed study of the performance effects of irregular communications

patterns on the CM-2 by studying iterative sparse matrix vector multiplication. Sparse

matrix vector multiplication is one of the simplest possible sparse computational kernels.

Sparse matrix vector multiplication is a basic component of many iterative methods that

arise in linear algebra. Examples of such algorithms include Krylov subspace linear equation

solvers [23], [20] as well as subspace method eigenvalue solvers.

Two different algorithms to carry out sparse matrix vector multiplication are defined,

coded and benchmarked. The performances of these algorithms are critically dependent on

the sparse matrix employed and on the way in which the sparse matrix is mapped to the

machine. To benchmark these sparse matrix vector multiplication methods, we develop and

employ a parameterized synthetic mesh, unstructured meshes generated for aerodynamic

codes, and a set of sparse matrices with banded patterns of non-zeros. This benchmarking

suite stresses the communications capabilities of the CM-2 in a range of different ways.

Most of our experiments involve use of a communications routing algorithm that schedules

relatively high bandwidth concurrent communications simultaneously over all communica-

tions channels ([6]). Several modern multiprocessors are capable of supporting the simulta-

neous use of all communications channels, [4], [19]. Consequently, the results described here

should shed light on the considerations that go into solving irregular problems on a variety

of multiprocessor architectures.

In Section 2 we describe the methods we use to carry out massively parallel sparse ma-

trix vector multiplication, in Section 3 we describe the test matrices we use in our CM-2

experiments. We describe the CM-2 communications architecture in Section 4 and describe

how we map problems onto the processors of the CM-2 in Section 5. We present our exper-

imental data in Section 6. This data outlines the performance characteristics of the CM-2

communication links, the communication compiler and the CM-2 general router. We also

explore the performance impact of the geometrically based mapping of problems. Finally we

compare the performance achieved by the two parallel sparse matrix vector multiply methods

proposed in Section 2.

2 Massively Parallel Sparse Matrix Vector Multiply

Variants

In this section, we outline a number of different ways ohe can carry out sparse matrix vector

multiplications on massively parallel machines.

2.1 Notation

Assume that A is an N by N matrix. We will assume that the matrix has a maximum of CR

non-zero entries in each row and a maximum of Cv non-zero entries in each column. There

are a wealth of notations and format representations that have been used to store sparse

matrices [20]. We use a representation in this paper that closely corresponds to the formats

we will use for storing data in massively parallel machines.

We will use the matrix in Figure 1 to illustrate our matrix representations. We introduce

the Jagged Diagonal Row storage format [24]. The non-zero elements of A are stored in a

size N by CR matrix a. A size N by CR matrix ±a stores the columns of A in which non-zero

elements appear. The entry a(i,j) represents the jth non-zero entry in row i of matrix A. The

entry ja(i,j) represents the column in A of the jth non-zero entry in row i of A. We depict in

Figure 2, the matrices a and j a that correspond to the example in Figure 1.

We will map various axes of our sparse data arrays onto mult_pr0cessor arrays. We will

assume that the number of processors in a processor array axis is greater than or equal to the

number of matrix entries in the corresponding sparse data array axis. This is a convenient

assumption to make in programming environments that allow each physical processor to

simulate varying numbers of virtual processors.

If a one dimensional N element array x is spread out among N processors, each processor

is able to store its value of x as a scalar variable. If we map the first dimension of a size N

by M matrix b onto N processors, each processor will store a column of b in a size M one

dimensional local array. If we map b onto a N by M two dimensional processor array, each

processor will store a single element b(i,j) of b.

2.2 One Row per Virtual Processor Algorithm

We will outline a row oriented algorithm that carry out matrix vector multiplies using N

virtual processors. In this discussion we will assume that the N virtual processors are

configured in a linear array. We map the right hand side vector x and the solution vector y

so that x(i) and y(i) are placed on processor i in the virtual processor array. We also map the

columns of a and j a onto the virtual processor array so that rows i of a and j a are assigned

to processor i. These array mappings are depicted in Figure 3. Each processor i obtains

the elements z(ja(i,j)) from processors ja(i,j), for 1 < j < CR. These array elements are

stored on processor i as depicted in Figure 4. Each processor i then concurrently carries out

the necessary inner product and places the result in y (Figure 5).

2

Figure 1: Array for illustrating data format

AI,1 0 AI,2 0

0 A2,2 0 A4,_

0 Aa,2 A3,3 0

A4,1 0 0 A4,4

Figure 2: Matrix a and ja

AI,1 A1,a 1 3

A2,2 A_,2 2 4

-43,2 A3,3 2 3

A4,1 .A4,4 1 4

Figure 3: One Row per Virtual Processor Data Placement

Proc 1

Proc 2

..o

Proc N

=(1) y(1) ,,(1,1) ... 4_,cR) j-O,1)
x(2) y(2) a(2,1) ... a(2, Cs) ja(2,1)

o,o o, ,,, ,,,

=(N) y(N) a(N, 1) ... a(N, CR) ja(N, 1)

... ja(1,CR)

... ja(2,cR)
,,, ,,.

... ja(g, CR)

Figure 4: Storage of x after Communication

Proc i =(ja(1,1))

Proc 2 x(ja(2,1))

• .° ,..

Proc N x(ja(N, 1))

... =(ja(1,eR))

... _(j,(2, oR))
• ,o ,,,

... x(ja(g, cR))

Figure 5: Matrix Vector Multiply Inner Products

Proc i

Proc 2

o..

Proc N

y(1) = Ec__sl a(1,j) • a(ja(1,j))

y(2) = Ej=ic_a(2,j) • x(ja(2,j))

y(g) = Ejc___ a(N,j) * x(ja(g,j))

Figure 6: Reduction Algorithm - Placement of arrays a and x in N by CR Processor

Array

.(1,1) o ... o
a(2,1) a(2,2).., a(2, CR) x(2) 0 ... 0

• °i o.i iH ooo i.o ,.. ,o_ ooo

a(N, 1) a(N, 2)... a(N, Ca) x(N) 0 ... 0

Figure 7: Reduction Algorithm - Assignment of x after Communication

x(ja(1, 1))

z(ja(2,1))

o,,

x(ja(N, 1))

... x(ja(1,vR))

... x(ja(2,cR))

.,. l,,

... x(ja(N, CR))

2.3 Reduction Algorithm

We next present an algorithm that uses reductions to compute the sparse matrix vector

multiply sums. This algorithm takes place on a size N by CR array of virtual processors.

Elements a(i,j) and ja(i,j) are assigned to virtual processor (i,j), and elements of the right

hand side vector x are assigned to the first column of virtual processors (Figure 6). A

communication phase follows in which x(ja(i, j)) is placed on virtual processor (i, j) (Figure

7). The multiplication of a(i, ja(i,j)) by x(ja(i,j)) is carried out on processor (i,j). Once

the products a(i, j a(i, j)) * x(j a(i, j)) are computed, a reduction along each row of the virtual

processor array can be used to perform the sums _R a(i, ja(i,j))*x(ja(i,j)). The resulting

solution vector is stored in the first column of the processor grid.

2.4 Reduction Algorithm Variants

There are many different variants of reduction algorithms.

There is a useful variant of the reduction algorithm described in Section 2.3 in which

we begin with copies of x(±) mapped to all processors in row i of the processor grid. This

variant generates a one-to-one pattern of inter-processor communication. When a matrix-

vector multiplication comprises a portion of a larger massively parallel program, it may be

advantageous to begin carrying out the matrix vector multiplication with the right hand

side vector layed out in this fashion. After the matrix vector multiply is carried out, each

element of processor array row i ends up with a copy of the solution value. Such a layout

has been used on in the implementation of iterative subspace methods on the CM-2 [16].

In another version of a reduction algorithm, all products are summed using a single

segmented scan operation. In a segmented scan operation, one generates a running sum that

restarts at certain given points. A sparse matrix vector multiply algorithm of this sort was

described by Kumar [14].

--S-
|
_a

=
I

4

2.5 CM-2 Reduction Algorithm Implementation

Actual multiprocessors have a specific number of processors; in many cases the number

of real processors is substantially smaller than the number of non-zero elements in a ma-

trix. In that case, some portion of the algorithm will be sequentialized. We use the cre-

ate_detailed_geometry PARIS instruction ([15]) in the Reduction algorithm to ensure that

the virtual processor dimension over which the reduction takes place is mapped to Iow order

address bits. Thus the reduction is sequentialized when the problem is large enough to fit a

row onto each physical processor.

3 Test Matrices

On a massively parallel architecture, matrix vector multiplication can be performed in a

large number of different ways. We use a range of matrices to allow us to elucidate the

resulting differences in performance. We use sparse matrices generated from finite difference

templates, banded matrices and sparse matrices obtained from unstructured meshes used in

aerodynamic simulations. We also generate parameterized synthetic meshes by generating

random numbers and using these to incrementally distort matrices obtained from a fixed

finite difference template. A detailed description of the matrices we use follows.

Banded Matrices

We generate banded matrices with size C bands. These matrices have size C bands

distributed around the diagonal, with C/2 - 1 bands lying immediately below the

diagonal and C/2 bands lying above the diagonal. Note that we do not use data

structures that take advantage of the banded structure of these matrices.

Synthetic Workload from Templates

A finite difference template is used to link K points in a square two dimensional mesh.

This connectivity pattern is incrementally distorted. Random edges are introduced

subject to the constraint that in the new mesh, each point still requires information

from K other mesh points.

This mesh generator makes the following assumptions:

1. The problem domain consists of a 2-dimensional square mesh of N points which

are numbered using their row major or natural ordering,

2. Each point is initially connected to K neighbors determined by a finite difference

template,

3. A matrix of pointers ia can be used to express the connectivity pattern of the

mesh. We use Jagged Diagonal Row storage format.

4. With probability q, each ja(i, j) will be replaced by a random integer between 1

and N.

5

In this paper we will use make use of two templates. One template connects each point

to its four nearest neighbors (K=4). The other template connects each point to both

its four nearest neighbors as well as to each of its four diagonal neighbors (K=8).

Unstructured Meshes from Aerodynamics

We use two different unstructured meshes generated from aerodynamic simulations.

Mesh A: A 21,672 element mesh generated to carry out an aerodynamic simu-

lation involving a multielement airfoil in a landing configuration [13]. This mesh

has 11143 points.

Mesh B: A 37,741 element mesh generated to simulate a 4.2% circular arc airfoil

in a channel [11]. This mesh has 19155 points.

These unstructured meshes are used to investigate the importance of mapping in matrix

vector multiplication in a realistic context. The ordering of rows in matrices derived

from these unstructured meshes is not particularly regular and bears little relation

to the kinds of natural row or column-wise orderings seen in matrices derived from

structured meshes.

4 CM-2 Communications Architecture !

IA p processor CM-2 may be regarded as a log2(p) - 4 dimensional hypercube in which each

edge of the hypercube is identified with a CM chips. Each pair of CM chips is connected

by a single bit wide data path. A p processor CM-2 has Iog2(p) - 5 Weitek floating point

accelerators. Two CM chips are associated with each Weitek chip, a sprint chip is used to

provide the needed interface between the CM chips and the Weitek accelerators. It proves

to be convenient to think of the CM-2 as a log2(p) - 5 dimensional hypercube each node of

which contains two CM chips, a sprint chip and a Weitek chip. In the rest of this paper, we

will refer to this collection of four chips as a sprint node. It should be noted that each pair

of CM-2 nodes are connected by a pair of single bit wide data paths.

When we program using the PARIS parallel instruction set, [15] data in the 32 processors
associated with each CM-2 node is stored in bit-serial format. Because the floating point i

processors require data to be in 32 bit word-oriented format, the coupling between the

bit serial processors and the floating point chip requires a data transposition. Thus, even

though all floating point computation is carried out by the 32 bit floating point processors,

the memory of each sprint node is fragmented into 32 separate segments. _-

A PARIS program is written in a manner that assumes the existence of an unlimited --

number of virtual processors. Interaction between virtual processors is carried out by passing

messages. When a pair of communicating virtual processors are assigned to different sprint

nodes, messages must traverse the intervening links. When communicating virtual processors

are assigned to the same node, no communication along hypercube links is required.

The communication compiler [6] is a set of procedures used to schedule irregular commu-

nication patterns on the CM-2. Each processor calls the communication compiler scheduler

and lists the processors with which communication is to take place. The communications

compiler produces a schedule which is used to determine how messages will be routed through

6

the hypercube channels. The architecture is able to make use of all hypercube links simulta-

neously. In a single router cycle, the CM-2 system software is able to carry out a bidirectional

message transfer along each of the two links between each sprint node.

Messages are assigned to wires independently at each sprint node. An assignment graph

is used to match messages with outgoing hypercube finks. For each communication cycle,

this assignment processes corresponds to picking links from a graph with two disjoint sets of

nodes (i.e., a bipartite graph). The first set of assignment graph vertices represent messages
that either

1. originate in the sprint node,

2. originate elsewhere and must be forwarded to their ultimate destination.

These vertices are called message vertices. The second set of assignment graph vertices

consist of the log2(p) - 5 pairs of hypercube links associated with each sprint node. These

vertices are called hypercube link vertices. Constraints on this assignment problem are:

1. when a message has been assigned to a hypercube link, it cannot be moved over any

other hypercube link during a given cycle,

2. once a hypercube link has been assigned to a message, it cannot transmit any other

message during a given cycle, and

3. hypercube llnk assignments always decrease the hamming distance to a message's des-

tination.

An a-edge is drawn from a message vertex M to a link vertex L when we route the message

represented by M over the hypercube link represented by L. The communication compiler

uses a heuristic assignment algorithm that attempts to maximize the number of messages

sent during each communications cycle [6]. The degree p of an a-edge E of the assignment

graph is defined as the sum of the number of a-edges leading out from E's message vertex

and the number of a-edges leading out from E's hypercube link vertex. The algorithm begins

by computing p for each a-edge. The a-edge S in the assignment graph with the smallest

value of p is chosen. All a-edges that terminate on S's message or link vertex are removed

and the process is repeated until all a-edges in the assignment graph have been chosen or

eliminated.

5 Mapping on the CM-2

There are a wide range of sparse matrix problems in which a-priori mapping information

can be derived. Many matrices arise from meshes. Mesh points that are physically close to

one another are much more likely to be connected than more distant mesh points. Domain

based geometrical information can be used to partition problems. The information can be

propagated and used to map a sparse matrix onto a massively parallel machine. We can

define mapped variants of the algorithms described in Sections 2.2 and 2.3.

One method we use to quantify the importance of judiciously mapping a domain onto

processors is to map the synthetic mesh from templates in the following ways:

• map onto a 2-D set of virtual processors in a way that minimizes the number of

hypercube links that must be traversed while communicating, or

• map onto a 1-D set of virtual processors.

The CM-2 software embeds both the 1-D and 2-D sets of virtual processors into the hypercube

using a binary reflected Gray code. When we map the synthetic mesh onto a 1-D set of virtual

processors, we guarantee non-local patterns of patterns of communication. By comparing

results from the 1-D and 2-D mappings, we obtain an idea of the performance differences we

can expect between

systematically partitioning and mapping a matrix to reduce communication require-
ments versus

embedding consecutively numbered rows of a matrix derived from a naturally ordered

finite difference mesh into consecutively numbered processors in a 1-D VP set.

We can make use of geometric information when we partition matrices that arise from

unstructured meshes (Section 3). In these cases, each mesh point is associated with a point !
in a spatial domain. The spatial domain can be partitioned in an attempt to minimize |

communications requirements while maintaining a balance of load. One of the commonly !
used partitioning methods is binary dissection [1]. The decomposition produced by binary

dissection can be embedded into a hypercube. We can define Jagged partitioning, a simpler

partitioning scheme that produces a decomposition that can be Gray code embedded into a

two dimensional processor grid in a particularly straightforward manner us. The motivation i
for this partitioning is to produce a roughly uniform communications flux over the two

hypercube dimensions involved in the two dimensional Gray coded mesh. We represent the i

number of neighbors linked to mesh point p by N(p). We estimate the work associated with
a subset S of the domain as i

W(S) = y] N(p).
pcS

Assume we want to create an M by N domain partitioning,

1. partition domain into M vertical strips Si, so that the W(S_) values are equal and

2. partition each 5'_ into N chunks C_,j so that the W(C_.j) values are equal.

Z

tt

Figure 8 depicts the results of this algorithm when applied to a illustrative domain. In

this example, we assume that we have a very fine eUiptically shaped mesh in the center of

an otherwise unmeshed domain.

We used both schemes to partition the test aerodynamic grids, both schemes generated a

comparable volume of interprocessor communication. Because we partitioned our synthetic

meshes in a rectilinear manner and mapped the resulting matrices onto a two dimensional

Gray coded mesh, for the sake of consistency, we chose the Jagged partitioning. It should

be noted that both partitioning methods were mapped to the Intel iPSC/860 and very

little performance distinction was found between the two partitioning schemes [21]. A

performance comparison on the CM-2 remains to be carried out.

i tl

Imll

t

Figure 8: Jagged Partitioning of Unstructured Mesh for Multielement Airfoil

6 Experimental Data

In the following subsections, we will describe the results of the following computational

experiments. These experiments were carried out on a 32K processor CM-2 located at

NASA Ames Research Center, on a 8K processor CM-2 located at Yale University and on a

32K processor CM-2 located at Etablissement Technique Central de l'Armement (France).

In Section 6.1, we study the performance characteristics of the CM-2 communications

links and of the communication compiler.

In Section 6.2, we carry out a performance comparison between the NEWS network,

the CM general router, and the communications compiler on matrices formed from the

synthetic mesh (Section 3). These matrices are mapped to the CM-2 using domain

based geometric information.

In Section 6.3, we use the synthetic mesh and the unstructured meshes from aerody-

namics to explore the performance impact of geometrically based problem mapping.

The computational experiments use the communications compiler.

In Section 6.4 we compare the performance achieved by the massively parallel sparse

matrix vector multiply variants described in Section 2.

In all but Section 6.4, we will employ the One Row per Virtual Processor algorithm.

9

6.1 Communications Compiler Performance

In this experiment, the communications compiler was used to schedule communications re-

quired for processor A to fetch from the memory of processor B. In Table 1, we present the

time needed for a given processor A to fetch from the memory of processor 0. With the

exception of processor A, all other processors fetch from their own memory. Each fetch was

carried out 10,000 times, the average fetch time was calculated. The low order 5 binary bits

of a processors address determine its locati0n within one of the sprint nodes described in

Section 4. The remaining log2(p) - 5 high order bits determine the sprint node in which a

processor is located. The number of hypercube links between two processors is determined

by the hamming distance between the log_(p) - 5 high order bits of the two addresses.
The fetching processors in Table I are listed in order of increasing hamming distrance from

processor 0. When the hamming distance is less than or equal to 5, the time required to

fetch is roughly constant. This suggests that the time required to fetch within a sprint node

does not depend on the processor's location within the node. As expected, the number of

router cycles was equal to the number of hypercube links, i.e. the hamming distance minus
5.

As discussed above, it is possible to transfer two floating point numbers bidirectionally,

along each hypercube edge during each router cycle. We map the four nearest neighbor graph

onto a two dimensional set of virtual processors, this VP set is mapped to sprint nodes so

that contiguous square or rectilinear chunks of domain are mapped to each node. A binary

reflected Gray code is used to embed the domain regions so that processors handling con-

tiguous domain regions are directly connected. Since we know the number of data elements

that must be exchanged along each hypercube link, we can calculate how many router cy-

cles inter-node communication should require. Table 2 depicts the number of router cycles

required and the communication time needed when this experiment was performed on 16K

processors. This table also indicates the size of the largest message transmitted. In this

simple case, we expect that the number of router cycles needed should be equal to half the

size of the largest message. For all but the_iargest domain tested, this expectation proved to

be accurate. The performance of the communications compiler degraded in a striking man-

ner for the largest domain tested. The algorithm described by Dahl [6] should not exhibit

this behavior, it seems likely that this degradation is due to a bug in the communications

compiler software.

6.2 Relative Performance of Different Communications Mecha-

nisms

A 16K processors Connection Machine-2 carried out a matrix vector multiply using the one

Row per VP algorithm. We used a matrix generated from a four nearest neighbor graph

with probabilities q equal to 0, and 0.2. The following communication mechanisms were

employed:

1. Get: The standard CM-2 general router is called four times, once for each of the four

off-processor data elements needed by each processor.

i

=-

10

Table 1: Time required for single fetch

Fetching Time router

Processor microseconds cycles

0

i

3

7

15

31

63

127

255

511

1023

2047

4095

8191

16383

32767

210

210

216

216

216

215

264

325

385

456

517

578

629

681

728

78O

0

0

0

0

0

0

1

2

3

4

5

6

7

8

9

I0

Table 2: 2-D VP set, Four nearest neighbors, 16K processors, p = 0.0

Domain Largest Number of Communication

Size Message Cycles Time (ms)

128x128

128x256

256x256

256x512

8

8

16

16

4

4

8

58

0.88

1.24

2.01

4.23

11

Table 3: Four Nearest Neighbor Synthetic Workload 16K processors, q = 0

Domain

128x128

256x128

256x256

512x256

news

Mflops

164.5

198.6

253.2

295.6

get compiled

get

Mflops Mflops

10.7 73.4

12.7 99.8

15.3 144.1

16.5 159.6

compiled

gather

Mflops

154.8

180.9

226.0

230.5

. Compiled get: Communications compiled using the communications compiler; the com-

munications compiler preprocessor was called four times, once for each of the four off-

processor data elements required by each processor. The data delivery procedure is

called four times during each mesh sweep.

. Compiled gather: Communications compiled using the communications compiler; a

single call to the communications compiler preprocessor handles each processor's four

data requests. For each iteration, a single data delivery function carries out all com-

munication.

4. NEWS: CM-2 communications procedures that transmit information using mesh em-

bedded into hypercube by binary reflected gray code. NEWS was only used to bench-

mark the completely uniform problem (q = 0).

In Table 3, we present timing results obtained from a completely uniform problem (q=0).

The time required for the CM-2 general router ranged from 15 to 17 times that used by the

NEWS network to solve the same problem. The compiled get and compiled gather were

much faster, the time required for the compiled gather ranged from approximately 5% to

30% more than the NEWS network. Note that the compiled get did not produce as good

results.

Table 4 depicts results obtained on 16K processors using the four nearest neighbor syn-

thetic mesh with q = 0.2. While the computational rates for this problem are lower than

those seen in the completely regular mesh, the communications compiler is still roughly a

factor of 11 faster than the general CM-2 router. It should, however, be noted that several

seconds were required for the communication compiler to schedule the routing of messages.

This perprocessing time is not included in the above depicted performance measurements.

i

|

6.3 Performance Effects of Geometrically Based Mappings

We compare performance results arising from 1-D and 2-D mappings of the synthetic mesh

and from meshes that are derived from aerodynamic problems. We use a range of param-

eters for the synthetic mesh to stress the communications network with varying degrees of

irregularity. We also compare the performance we obtain when we

map aerodynamic unstructured meshes onto sprint nodes or

12

Table 4: Four Nearest Neighbor Synthetic Workload 16K processors, q -- 0.2

Domain

128x128

256x128

256x256

512x256

get

Mflops

8.1

10.2

10.2

10.7

compiled

get

Mflops

42.2

66.2

91.6

103.2

compiled

gather

Mflops

90.5

100.9

119.2

127.0

assign matrix rows to virtual processors in a naive fashion.

In all cases described in the section, we used the One Row per VP sparse matrix vector

multiply algorithm.

6.3.1 Synthetic Workload from Templates

The performance results in Table 5 are obtained from synthetic mesh test matrices on an

8K processor CM-2. The matrices are mapped in one of the two following ways:

1. A domain's mesh points are partitioned into a two dimensional grid composed of rect-

angular domain regions. The two dimensional grid is Gray coded into the CM-2, with

the matrix rows that correspond to each region's mesh points assigned to processors

in the appropriate sprint node.

2. A domain's mesh points are ordered in a row-wise manner. The virtual processors of

the CM-2 are ordered using a one dimensional Gray code, consecutively ordered rows

are assigned to consecutively numbered CM-2 processors.

Consider first the q= 0 case. When the 2-D grid of virtual processors is employed, mes-

sages in the four point stencil synthetic mesh must only traverse one hypercube link, in the

eight point stencil messages must traverse only two links. When we use a one dimensional

grid of virtual processors, this degree of locality is not assured and we see reduced perfor-

mance. As q increases, the performance obtained in the 2-D case drops dramatically, while

the performance obtained in the 1-D case changes only slightly. It is noteworthy that the

1-D embedding yields substantially better performances for high q values; the reasons for

this are not clear.

In Table 6 we depict, for the four nearest neighbor synthetic mesh, the time required

for computation and communication, along with the number of cycles needed by the router.

It is noteworthy that even when q = 0, 2-D VP set matrix vector multiplications are very

communication intensive. For instance, when we map to a 2-D VP set, approximately 90%

of the time time spent on the q= 0 case is due to communication. For q = 0.2, 98% of the

time is attributable to communication. For p = 0 with a 2-D VP set, as the domain grows

larger, the fraction of time spent communicating should decrease due to the decrease in the
ratio of the number of data that must be communicated to the number of data that must

be computed. In a 256 by 256 domain, 83% of time is spent communicating. In Table 6

13

Table 5: Synthetic mesh, One Row per VP

Probability

0.0

0.i

0.2

0.3

0.5

0.8

1-D VP array

4 pt stencil

Mflops

25.6

25.4

24.7

21.1

23.6

22.9

2-D VP array

4 pt stencil

Mflops

90.1

55.1

24.2

18.0

12.1

8.0

I-D VP array

8 pt stencil

Mflops

18.7

19.1

19.6

20.1

21.2

22.8

2-D VP array

8 pt stencil

Mflops

77.8

42.6

26.0

19.1

12.5

8.1

Table 6: Four nearest neighbor synthetic mesh mapped to 1-D and 2-D VP sets,

16K processors

Domain q 2-D VP set

Size One Row/VP
Total C omm

, _Time(ms) Time(ms)
128x128 0.0 0.98

128x256 0.0 1.21

256x256 0.0 2.41

128x128 0.2 4.26

128x256 0.2 7.83

256x256 0.2 14.89

1-DVP set

One Row/VP

0.88

1.24

2.01

4.03

8.12

14.47

I Cycles

4

4

8

58

110

207

Total

Time(ms)
2.62

5.23

10.18

3.03

6.46

11.27

CoTnm

Time(ms)
2.82

5.17

9.48

2.75

6.38

10.10

Cycles

33

67

133

38

86

142

we also note that increasing q from 0.0 to 0.2 does not have a large impact on the cost of
communication when we use a 1-D VP set.

6.3.2 Importance of Geometrically Based Mapping - Benchmarks using Meshes

from Aerodynamic Problems

In this section we look at performance results obtained from the aerodynamic unstructured

meshes described in Section 3. The two aerodymanic unstructured meshes were used in

iterative sparse matrix vector multiplications on 4K, 8K and 16K CM-2 configurations, The

communications compiler was employed to schedule communications. We also carried out

calculations to-flnd Out the number Of router cycles that would be required if we were to

implement a different, and simpler router algorithm.

In Table 7 we depict the total time required to carry out a sparse matrix vector multiply,

the communication time and the computational rate in megaflops. We partition each mesh

into a two dimensional rectilinear array of Iog2(p) - 5 blocks using jagged partitioning. Each

block is assigned to a Gray coded sprint node (this is referred to as mapped in Table 7. We

also performeda set of experiments in which we assigned matrix row i to the i th element

in a gray coded array of virtual processors. Recall that the numbering of the matrix rows is

14

=

=

|

m

Table 7: Effect of Processor Assignment on Unstructured Meshes from Aerody-

namics

Mesh Assignment Number Total Comm.

Type Processors Time(ms) Time(ms)

Mesh A

Mesh A

Mesh A

Mesh A

Mesh A

Mesh A

Mesh B

Mesh B

Mesh B

Mesh B

Mesh B

Mesh B

Mapped

Naive

Mapped

Naive

Mapped

Naive

Mapped

Naive

Mapped

Naive

Mapped
Naive

4K

4K

8K

8K

16K

16K

4K

4K

8K

8K

16K

16K

8.8

16.8

4.8

9.8

4.2

9.8

8.8

32.6

4.8

18.4

5.7

9.8

6.9

14.9

3.8

8.8

3.7

9.2

6.4

30.2

3.6

17.1

5.1

9.2

Mflop

15.0

7.9

27.4

13.4

31.0

23.2

26.1

7.0

47.0

12.4

39.8

23.2

Router

Cycles

59

189

35

116

46

131

32

422

22

244

59

131

not closely tied to geometric locality. This is referred to as naive in Table 7.

For 4K and 8K processors, we see a difference of roughly a factor of 2 to 4 between the

computational rates achieved by the mapped and the naive processor assignment. We see

only a modest improvement in total time in Mesh A when we go from 8K to 16K processors.

Recall that the number of mesh rows is 11,143 which is smaller than the number of processors

(although the number of mesh rows is still much larger than the number of hypercube nodes).

In these matrices, different rows have different numbers of non-zero elements. Table 7.

In Table 7, we depict the number of router cycles required by the communications com-

piler to carry out the communication involved in each problem. It is not surprising that the

mapped processor assignments required many fewer router cycles than did the naive proces-

sor assigments. It is notable that when we performed mapped assignment for both Mesh A

and Mesh B, the number of router cycles was minimized when we used 8K processors. This

result is not surprising since for a fixed size problem, increasing machine size both increases

the potential communication concurrency, it can also increase the distance over which data

must be routed.

6.4 A comparison between sparse matrix vector multiply algo-

rithms

We compare the One Row per VP and the Reduction sparse matrix vector multiply algorithm

on a 16K processor CM-2 using the four nearest neighbor synthetic mesh (K=4 with p = 0.0

and 0.2). We use the four nearest neighbor synthetic mesh to generate an N. M row matrix.

When we use the One Row per VP algorithm to carry out the sparse matrix vector multiply,

we assign the sparse rows of the matrix to a size M • N one dimensional logical array of

virtual processors. When we use the Reduction algorithm, we declare a CR by M * N grid of

virtual processors and assign each element of the matrix to a separate virtual processor. As

15

Table 8: One Row Per VP v.s. Reduction 1-D VP set, Four Nearest Neighbors

Domain p _- 0.0 p -- 0.2

one row/vp reduction one row/vp reduction

Mflops Mflops Mflops Mflops

64x64

64x128

128x128

256x128

256x256

12.9

25.8

51.6

52.5

53.0

24.4

35.2

41.5

41.7

42.7

11.5

19.9

44.6

38.9

43.2

21.1

27.8

32.1

34.4

41.2

described in Section 4, this ensures that the low order virtual processor dimension (length

CR) is mapped to low order address bits; i.e., reduction is sequentialized when the problem

is large enough to fit a row onto each physical processor.

In Table 8, we note that the Reduction algorithm performs better than the One Row

per VP algorithm in matrices arising from 64x64 point and 64x128 point domains. In these

matrices, there is fewer than one virtual processor per physical processor. In these cases,

the extra parallelism afforded by the Reduction algorithm yields benefits. For domains size

128x128 and above, the inter-processor and inter-hypercube communication patterns are

both identical, and in both algorithms reduction is sequentialized. While the One Row per

VP algorithm performs slightly better than the Reduction algorithm for large domains, the

difference can be traced to difference in the efflciencies achieved by the different PARIS

instructions used in the algorithms.

When we recall that it is really the floating point chips that perform calculations, we

will realize the the above discussion is a bit misleading. These results underline some of the

disadvantages inherent in an architecture that couples bit serial processors to bit parallel

floating point chips. On a 64x64 domain, in the One Row per VP algorithm, we assign 8

rows to each sprint node. Nevertheless, when we assign fewer than one row per bit serial

processor, we see a striking performance degradation. The relationship between performance

and the ratio of virtual to physical processors (VP ratio) is well known ([18]).

In Table 9 we compare the results obtained using the One Row per VP and the Reduction

algorithms for banded matrices with N rows and bandwidths C = 4,8 and 16. The behavior

as a function of C is complex as it is determined by tradeoffs between:

• ratio between number of computations and communications

• distance transmitted information must travel

• ratio between virtual and physical processors (in the reduction cases)

Note that we include timings not only from the standard Reduction algorithm but from

the Reduction algorithm with Replication. Except for the N = 4K, C = 16 case, One Row

per VP performs better than Reduction.

Reduction with Replication consistently out-performs Reduction. If the CM-2 were ac-

tually using bit serial processors to perform computations and communications, this discrep-

ancy would be easy to explain. In the CM-2 however, a good explanation of this difference

i

!

m

_!

m

i

E

16

Table 9: Comparison between One Row per VP and Reduction Algorithms for
Banded Matrices

Reduction

N C Time(ms)

64 K 8 8.1

4 4.4

16 K 16 5.3

8 2.3

4 1.4

4 K 16 2.5

8 1.4

4 1.0

M flops

129

120

99

112

9O

52

48

32

Repl. Reduction

Time(ms)
5.5

2.8

3.9

1.7

1.0

2.1

1.01

0.70

Mflops

189

180

132

147

131

62

65

47

One Row / VP

Time(ms) M flops

4.17 252

2.0 264

4.2 126

1.5 180

0.8 159

3.3

1.3

1.0

39

5O

34

would have to take into account some fairly subtle interactions between the algorithm, the

communications compiler, the way in which PARIS supports virtual processors and the

hardware.

7 Conclusion

A number of researchers have used the CM-2 to solve sparse and irregular problems. Groups

who used the relatively expensive general router encountered mixed results. Calculations

arising from sparse linear algebra seemed to fare poorly; the router operations were amor-

tized by relatively few computations [3], [17]. Other computations had a higher ratio of

computations to routing operations, and the general router proved to be less of a bottleneck

[5].

Several researchers have proposed methods to optimize the performance of inter-processor

communication arising from repeatedly used irregular data access patterns. These efforts

have been directed towards the MPP [7], the Intel iPSC multiprocessors [22] as well as

towards the CM-2 [6]. Hammond [12] reported results using the communication compiler on

an unstructured mesh problem arising in computational fluid dynamics. We have used the

sparse matrix vector multiply kernel to carry out a detailed study of the performance effects

of irregular communications patterns on the CM-2.

We carried out a set of experiments to characterize the communications capabilities of

the CM-2 under a variety of controlled conditions. The efficiencies achieved are critically

dependent on the communications pattern. In sparse matrix vector multiplication, the com-

munications pattern is dependent on the structure of the sparse matrix, as well as on the

way in which the problem is mapped onto the machine.

In the process of carrying out our performance evaluation, we developed and then made
extensive use

a parameterized synthetic mesh,

unstructured meshes that had been generated for aerodynamic codes, and

17

a set of sparse matrices with banded patterns of non-zeros.

This benchmarking suite stressed the communications capabilities of the CM-2 in a range of
different ways.

Even on well partitioned problems, use of the general router led to order of magnitude

performance degradations (Section 6.2). While poor mapping and problem irregularity did

lead to performance degradation, the degree of degradation was typically more modest (Sec-

tion 6.3). Much work has been focused on developing effective problem partitioning methods

(e.g., [2], [9], [10]). The partitioning methods typically attempt to evenly partition computa-

tional work while reducing some objective function related to interprocessor communication

costs. The results presented in this paper (along with those described in [12]) make it clear

that, in the absence of mechanisms to ensure effective communications network utilization,

careful problem partitioning may have only a very limited performance impact. On the

other hand, particularly when used in conjunction with good methods for partitioning prob-

lems, important payoffs can come from developing mechanisms to increase the utilization of
communications networks.

The results presented here suggest that the performance of sparse and unstructured

computations on the CM-2 can be optimized to a considerable extent. There is reason to

pursue investigations into improved communication compiler algorithms. We have carried

out preliminary experimentation which indicates that it may be possible to further speed

communications through better algorithms to assign messages to CM-2 communications

links. It also would seem likely that the preprocessing costs could be substantially reduced.

8 Acknowlegements

We would like to thank Harry Jordan for his careful editing of this manuscript and to Steve

Hammond and Denning Dahl for helpful discussions.

18

i
z

|

i
|

=

i

!
5ffi

l

References

[1]

[2]

[3]

[4]

[5]

[6]

[7]

[8]

[9]

[10]

[11]

[12]

[13]

M. BZROZR AND S. H. B OKHARI, A partitioning strategy for nonuniform problems on

mult_rocessors, IEEE Trans. on Computers, C-36 (1987), pp. 570-580.

M. J. BERGER AND S. H. BOKHARI, A partitioning strategy for pdes across multipro-

cessors, in The Proceedings of the 1985 International Conference on Parallel Processing,

August 1985.

H. BERRYMAN, 3. SALTZ, AND W. GKOPP, Krylov methods with incomplete factor-

ization preconditioners on the cm-_, Journal of Parallel and Distributed Computing, 8

(1990), pp. 186-190.

s. BORKAR, R. COttN, G. COX ET AL., iwa_p: An integrated solution to high-

speed parallel computing, in Proc. of the Supercomputing Conference, November 1988,

pp. 330-339.

J. CERUTTI AND H. TREASE, Free Iagrange methods on the connection machine, in To

appear: Proceedings of the 2nd International Conference on Free Lagrange Methods,

Springer-Verlag, 1991.

E. D. D AHL, Mapping and compiled communication on the connection machine system,

in Proceedings of the Fifth Distributed Memory Computing Conference, Charleston

S.C., 1990.

.]'. DORBAND, SOr_ computation, in Proceedings of the 2nd Symposium on the Frontiers

of Massively Parallel Computation, October 1988, pp. 137-141.

I. s. DuFF AND J. K. REID, Direct Methods .for Sparse Matrices, Oxford Science

Publications, Oxford University Press, New York, 1986.

O. Fox, A graphical approach to load balancing and sparse matriz vector multiplication

on the hypercube, in The IMA Volumes in Mathematics and its Applications. Volume

13: Numerical Algorithms for Modern Parallel Computer Architectures Martin Schultz

Editor, Springer-Verlag, 1988.

a. Fox, A. KOWALA, AND R. WILLIAMS, The implementation of a dynamic load

balancer, in The Proceedings of the Hypercube Microprocessors Conf., Knoxville, TN,

1987, pp. 114-121.

Numerical methods -for the computation of inviscid transonic flows with shock waves - a

gamm workshop, in Notes on Numercial Fluid Mechanics, Vol. 3.

S. HAMMOND AND R. SCHREIBER, Mapping unstructured grid problems to the connec-

tion machine, Report 90.22, RIACS, October 1990.

D. J. MAVRIPLIS, Multigrid solution of the two-dimensional Euler equations on un-

structured triangular meshes, AIAA Journal, 26 (1988), pp. 824-831.

19

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

[22]

[23]

M. M XSRA AND P. KUMAR, E O_cient vlsi implementation of iterative solutions to sparse

linear systems, Report 246, Institute for Robotics and Intelligent Systems, University

of Southern California, 1988.

Using the connection machine system (paris), Volume 3, Report ANL/MCS-TM-118,

Argonne National Laboratory, June 1989.

S. PETITON, Parallel qr algorithms for iterative subspace methods on the connection

machine, in Proceedings of the Fourth SIAM Conference on Parallel Processing for

Scientific Computing, December 1989.

B. PHXLLXPPE AND Y. SAAD, Solving large sparse eiginvalue problems on supercomput-

ers, in Parallel and Distributed Algorithms, M. C. et al., ed., North Holland, 1989.

R. Pozo AND A. MACDONALD, Performance characteristics of scientific computation

on the connection machine, Report 440, Computer Science Dept, University Colorado

at Boulder, 1989.

3. RATNER, Personal communication, tech. rep.

Y. SAAD, Sparsekit: a basic tool kit for sparse matriz computations, Report 90-20,

RIACS, 1990.

J. SALTZ, n. BBRRYMAN, AND J. WU, Runtime compilation for multiprocessors,

Report 90-59, ICASE, 1990.

J. SALTZ, K. CROWLEY, R. MIRCHANDANEY, AND H. BERRYMAN, Run-time schedul-

ing and execution of loops on message passing machines, Journal of Parallel and Dis-

tributed Computing, 8 (1990), pp. 303-312.

p. v EN KATAZ RISH NAN, Preconditioned conjugat e gradient methods for the compressible

navier stokes equations, to appear - AIAA Journal, (1991).

[24] P. VENKATKRISHNAN, J. SALTZ, AND D. MAVRIPLIS, ParalIelpreconditionediterative

methods for the compressible navier stokes equations, in i2th Intermatlonal Conference

on Numerical Methods in Fluid Dynamics, Oxford, England, July 1990.

[25] D. L. WHITAKER, D. C. SLACK, AND R. W. WALTZRS, Solution algorithms for the

two-dimensional euler equations on unstructured meshes, in Proceedings AIAA 28th

Aerospace Sciences Meeting, Reno, Nevada, January 1990.

2O

Report Documentation Page
t_lonal _O_aut_s _

1. Report No. 2. Government AccessionNo.
NASA CR-187514

ICASE Report No. 91-12

4. Title and Subtitle

PERFORMANCE EFFECTS OF IRREGULAR COMMUNICATIONS

ON MASSIVELY PARALLEL MULTIPROCESSORS

7. Author(s)

Joel Saltz

Serge Petiton

Harry Berryman

Adam Rifkin

9. PerformingOrganization Name and Address

Institute for Computer Applications in Science

and Engineering

Mail Stop 132C, NASA Langley Research Center

Hampton, VA 23665-5225

12.Sponsoring AgencyName and Address

National Aeronautics and Space Administration

Langley Research Center

Hampton, VA 23665-5225

3. Recipient'sCatalog No.

5. Repo_ Date

January 1991

6. PerformingOrganization Code

8. PerformingOrganization Repo_ No.

91-12

10. Work Unit No.

505-90-52-01

tl. Contractor Grant No.

NASI-18605

13. Ty_ of Re_rtandPeriodCovered

Contractor Report

14. Sponsoring /_gencyCode

15. Supplementa_ Notes

Langley Technical Monitor:

Michael F. Card

Submitted to Journal of Parallel

and Distributed Computing

Final Report

16. Abstract

We conduct a detailedstudy of the performance effects of irregular communica-

tions patterns on the CM-2, We characterize the communications capabilities of the

CM-2 under a variety of controlled conditions.

In the process of carrying out our performance evaluation, we develop and make

extensive use of a parameterized synthetic mesh. In addition we carry out timings

with unstructured meshes generated for aerodynamic codes and a set of sparse matri-

ces with banded patterns on non-zeros. This benchmarding suite stresses the com-

munications capabilities of the CM-2 in a range of different ways. Our benchmark

results demonstrate that is is possible to make effective use of much of the massive

concurrency available in the communications network.

17. Key Words (Suggestedby Author(s))

SIMD, sparse computation, matrix vector

multiply, communications compiler,

connection machine, CM-2

19. SecurityClassif.(of thisreport)

Unclassified

18. DistributionStatement

60 - Computer Operations and Hardware

61 - Computer Programming and Software

Unclassified - Unlimited

_. Security Cla_if. (of thispa_)

Unclassified

21. No. of pa_s _. Price

22 A03

NASA FORM lg2g OCT 86 NASA-Langley, Iggl

